Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps

نویسندگان

  • Mauro Fischer
  • Matthias Huss
  • Mario Kummert
  • Martin Hoelzle
چکیده

Due to the relative lack of empirical field data, the response of very small glaciers (here defined as being smaller than 0.5 km2) to current atmospheric warming is not fully understood yet. Investigating their mass balance, e.g. using the direct glaciological method, is a prerequisite to fill this knowledge gap. Terrestrial laser scanning (TLS) techniques operating in the near infrared range can be applied for the creation of repeated high-resolution digital elevation models and consecutive derivation of annual geodetic mass balances of very small glaciers. This method is promising, as laborious and potentially dangerous field measurements as well as the interand extrapolation of point measurements can be circumvented. However, it still needs to be validated. Here, we present TLS-derived annual surface elevation and geodetic mass changes for five very small glaciers in Switzerland (Glacier de Prapio, Glacier du Sex Rouge, St. Annafirn, Schwarzbachfirn, and Pizolgletscher) and two consecutive years (2013/14–2014/15). The scans were acquired with a long-range Riegl VZ®-6000 especially designed for surveying snowand ice-covered terrain. Zonally variable conversion factors for firn and bare ice surfaces were applied to convert geodetic volume to mass changes. We compare the geodetic results to direct glaciological mass balance measurements coinciding with the TLS surveys and assess the uncertainties and errors included in both methods. Average glacier-wide mass balances were negative in both years, showing stronger mass losses in 2014/15 (−1.65 m w.e.) compared to 2013/14 (−0.59 m w.e.). Geodetic mass balances were slightly less negative but in close agreement with the direct glaciological ones (R2 = 0.91). Due to the dense in situ measurements, the uncertainties in the direct glaciological mass balances were small compared to the majority of measured glaciers worldwide (±0.09 m w.e. yr−1 on average), and similar to uncertainties in the TLS-derived geodetic mass balances (±0.13 m w.e. yr−1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of an ultra-long-range terrestrial laser scanner to monitor the mass balance of very small glaciers in the Swiss Alps

Due to the relative lack of empirical field data, the response of very small glaciers (<0.5 km) to current atmospheric warming is not fully understood yet. Investigating their mass balance is a prerequisite to fill this knowledge gap. Application of the direct glaciological method is one option. Since most recently, terrestrial laser scanning (TLS) techniques operating in the near infrared rang...

متن کامل

Sensitivity of Very Small Glaciers in the Swiss Alps to Future Climate Change

Very small glaciers (<0.5 km2) account for more than 80% of the total number of glaciers in midto low-latitude mountain ranges. Although their total area and volume is small compared to larger glaciers, they are a relevant component of the cryosphere, contributing to landscape formation, local hydrology, and sea-level rise. Worldwide glacier monitoring mostly focuses on medium-sized to large gl...

متن کامل

Surface elevation and mass changes of all Swiss glaciers 1980–2010

Since the mid-1980s, glaciers in the European Alps have shown widespread and accelerating mass losses. This article presents glacier-specific changes in surface elevation, volume and mass balance for all glaciers in the Swiss Alps from 1980 to 2010. Together with glacier outlines from the 1973 inventory, the DHM25 Level 1 digital elevation models (DEMs) for which the source data over glacierize...

متن کامل

Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models

Massive glacier thinning in the Alps during the past 20 years is documented by direct mass balance measurements on nine regularly observed glaciers. How representative this limited sample of glaciers is for the entire Alps, however, remained uncertain. The near-global digital terrain model from the SRTM enables a closer analysis of this question, which is of fundamental importance to assess ove...

متن کامل

Estimation of Mass Balance of the Grosser Aletschgletscher, Swiss Alps, from ICESat Laser Altimetry Data and Digital Elevation Models

Traditional glaciological mass balance measurements of mountain glaciers are a demanding and cost intensive task. In this study, we combine data from the Ice Cloud and Elevation Satellite (ICESat) acquired between 2003 and 2009 with air and space borne Digital Elevation Models (DEMs) in order to derive surface elevation changes of the Grosser Aletschgletscher in the Swiss Alps. Three different ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016